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1. ~troduction

of characteristics wiU le presented generally for
quasiltiear differential equations of the second order b two variables.
This is necessary because of the manifold requirements to be demanded
from the theory of characteristics.

The function X of the two independent variables x, y is assmwd
as satisfying the quasiltiear differential equation

AX=+B ~+C~y+D=O (1)

This differential equation is called quasilinear since the highest
derivatives, nsmely those of the second order, occur only linearly. The
coefficients A, B, C, D &we functions of x, y, X, Xx, x . The

1differential equationa of gas fluws set up in chapter I al belong to

*“Charatieristikentheorie.“ Technische Hochschul.eDresden,
Archiv Nr. 44/2, Chapter II.
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2 NACA TM

this type. It wiU. occasionally be useful to interpret the desired
integral X(x, y) of the dtiferential equation (1) geometrically as
integral surface in the x, y, X - space.
.-

The characteristics are to be introduced In three ways:

X242

First, as loci of the possible apyesrxmce of small .d.istur%ances.
For gas flaws this interpretation is obvious: the characteristic base
curvee here are notldng but the Mach waves obtained in the known
elementary manner by superposition of sound waves accord@ to Euygens’
principle as fronte of a weak disturbance wave. FoUowing it wi~ be
defined of what type the disturlxmces or discontinuities are which are
propagated for instance from the boundary of the region into the
interior along the characteristics.

The second interpretation of the characteristicswfKl start from
the fundamental fact that the characteristics are the sole curves
from which in general the integral surface X(x, y) canbe constructed.

The third introduction of the characteristics is the one used most
frequently in mathematical representations. It shows in w~t sense the
continuation of an integral surface beyond a characteristic may become
indefinite. This definition of characteristics is unnecessary for our
purposes. It is mentioned merely in order to ensure connection with
the customary nmthematlcal literature; however, omissim of this section
is not detrimental to the understanding of the rest.

The purpose of this chapter is attained with the development-of
two general approxtition methods for the solution of the characteristic
differential equation systsm.

2. Prelbdnary Statements

The characteristics lie on the integral.surface X(x, y). Their
projections on the x-y plane, or, In other words, their base
projections, are designated as “characteristicbase curves”. Let these
characteristic base curves have the equation

(@7(X,Y) = constant

For reasons of a simpler manner or expression, the characteristic base
curve —

.s.

u

—

T(X,Y) = o (2a)
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will be considered (fig. 1.) The characteristic family of curves (2) may.
be intersected ly another family of curves.

.
E(x,y) = constant (3)

No further data are given concerning this second family of curves; for
hyperbolic differential equations where two families of characteristics
appear, the second family of characteristic base curves will be
selected as E - family. This is mentioned only inoidenta31y; for the
hmediately foil.ow~ considerations only q = Constant =e assumed as
characteristic base curves which are intersected by the
curves E = Constant. Thus one has as coordinate along a characteristic
curve, ~, as transverse coordinate, q. The derivative of a
function f(x, y) with respect to E along a characteristic base
curve (as which q = O will be selected below) will be called “interior
derivative”; to atmin it, nothing but the course of the function within
the considered ~ - region on q = O is needed. Derivatives with
respect to q require lmowledge of the behavior of the function to be
derived outside of the characteristic curve; they will be called,
“exterior derivatives”. It is obvious that the conceptions of interior
and exterior derivatives are very closely connected with the conceptions

. of tangential and normal derivatives.

After these preliminary statements the announced definitions of
characteristics are set up.

3. Characteristics as Loci of Discontinulties “
of the Second Order

The integral function x and its first derivatives are to remain
conttiuous when the characteristic q = O is transverse. Disconti-
nuities h the second derivatives - the highest ones occurring in the
differential equation (1) - are to %e permissible but with the
restriction that at least the titerior or tangential derivatives still
remain continuous. The permitted discontinuities concern at most the
exterior derivatives of the derivatives of the first order.

.

These properties are best formulated h the ~, q - coortinati
system. Obviowly this is permissible stice the geometrical
interpretations of the conceptions used for definition of characteristics
are independent of aqy coordinate system. x Is the height of the
integral surface above the base plsne, the first derivatives of x
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with respect to my two coordinates define the positionl of the surface
elements. Interior and exterior derivatives of the ftrst derivatives
of X, therefore, measure the variation of the position of the surface
elements along and across the curve q = O.

According to the definition given a%ove X, x~,
‘~

are, therefore,

to remain continuous when ~ = O is crossed, furthermore the interior
derivatives of Xg ~ ~~ thus X~~ m ~~. The single permitted
discontinuity of the second order may, therefore, appear only in Xq7.

The discontinuity the quantity <v undergoes inpasslng from negative

to positive will be d.esignatedby
[1‘Vi “ —

In order to set up the equation of q = O in the x, y coordinates
one has to go back to the original coord~tes.

Consequently the discontintities

[1x=

~ x=, X=, Xw will be

P=4=bib-’
—

%?he position of the sirface elements is defined%y the direction
of their,normals, th,edirection-cosineQ of which in the x-y-x system
are the proportion X~ : %“7 : -1.

.

.
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If one now sets up the differential equation (1) for
positive and negative o for the same ~ and forms
one obtains

fqjix]++%]++-J= 0,

or according to (5)

%x.2 -I-B~xTy + Crj=2= O.

absolutely small
the dfiference,

(6)

(7)

This equation wil.1be desi~ted as “characteristiccondition”.

If one expresses the characteristic base curve q = O in the
parameter form x = x(g); y = Y(E), one may write, since the slope

YE
h for the cis ~=--, haracteristic condition (7) also:

‘k “x

A& Bj&+Ck2 =0,

where the differentiations with res~ect to the parameter
dots above them.

From this quadratic relation one may for hyperbolic
equations where

~2 -4AC>0

set up the differential equations for two characteristic
base cmves.

(8)

sre denoted by

Mfferential

(9)

families of

Whereas the occurrence of disconttiuities of the second order is
restricted.my the characteristic condition, the differential equati~n (1)
does not offer a condition for the existence of discontinuities of the
first order. One can see this readily if one assumes on each side of
a space curve, selected as carrier of the Mtial comtttions, two
different yositions of the surface elements prescribed for the integral
surfaces. Discontinuities of the first order appear in gas dynsmics
as compression shocks.
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4. Characteristic Strips as Elements
of the lkrbegra.1Surface

For the second interpretation of the characteristics one at first
orders with regard to a curve q = O on a surface X the positions
of the suzface elements. One then speaks of a striy of the first
order ~. The surface X is not a priori assumed to be an integral
surface. The position of the surface elements is suitab~ determined
by the derivatives of X with respect t.othe coordinates g ad. TI;
thUS Xf = PI, ~ = qlg me strip ~ is deteruxhwi in parametric

representation, thus by x(~), Y(~), X(E), I@)} @)”

The pro%lem arises whether it is possible to express the
quasilinear differential expression on the left side of-tie differential
equation (1):

AXu+BXg+CXW+D , , (lo)

merely by the five strip quantities x(g)? Y(3)$ x(g), Pi(E), !@)

and their derivatives with respect to ~. One then says that the
differential expression (10) lies in the strip ~ or that it iS -

“interior differential expression” pf the striP ~.

Obviously one may then hope to satisfy the differential equation (1)
along such a strip without leaving it h a transverse direction, and
to luild up the desired titegral surface from such strips.

According to presupposition, the coefficients A, B, C, D deyend

‘~ ‘n ‘> y> ‘j plj ql which are given directly on the strip. Thus

it z%mains OD2.Yto be determined when X=, Xq, Xm c-be express~

merely by the five strip quantities and their interior derivatives.
Accord3ng to the formulas (4), introducing as far as possible the strip
quantities, one obtains:

.

*

“
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One sees immediately that the sole term which
interior differentiation in G (that is with

stands first on
. obtains as sole

7

oannot be fonmd hy
respect to ~) always

-L-

the right side of these expressions
differential oontril)utionof (10)

(U). Thus one

In order to have the differential expression (10) lie completely

‘%itism
cessaxy and sufficient that

Aqx2 +BTq +C
Xy %2=0

This is again the characteristic relation (7). Thus none but the
characteristic strips can be concerned in the building up of an integral
surface from strips. Of course, it rem%lns still to be shown that the
building up from the characteristic strips is actually yosslble.

r

5. Tndefb.ite Conttiuation of anlhbegral
. Surface Beyonda Characteristic Stri~

In order to obtain the third custcmmry definition of characteristics
one starts from a strip of the first order on the integral surface X.
Let the strip be determinedas function of the parameter g by the five
quantities x, y, X, Xx = T,

k
~= Due tothemeardngof p and q

there exfsts between the five s r~p quantities x, y, x, p, and. q the
relation:

or, if’one a@n denotes the tiferentiations with respect to the
~rameter by dots above them:

This is the so-oalled “stmip relation of the first order”.

(32)

.
Let the derivatives of the second order which are not given be

denoted by r = ~, s = X=, t = Xn. The question arises whether
.
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it is always possible to determine uniquely with the aid of-the
differential eq.uatlon(1) on the stiip of the first order the
derivatives of the second order r, s, and t and furthermore the
derivatives of higher order so that a conttiuation of’the integal x
by a Taylor series appears yossible. A well-lmown theorcm of SonJa
KowalewskaJa deals with this analytical continuation of an integral.

For the determination of r, s, t from the five strip
quantities x, y, X, p, q the differential equation (1)1 for one,
is at disposal, now written as follows:

IYom the meaning
second order:

Ar+Bs+Ct=-D (13)

of r, s, t one obtains the strip relations of the

for which one writes briefly:

kr+ys=i

Correspondingly, one obtains as further strip relation:

xs+yt=~

From the three linear equations

Ar+Bs+Ct =-D

il-+ys =P -

Xs+yt=q.

(14)

. .—

(15)

(13)

(14)

(15)
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r, s, t may he detemined uniquely, if the foilowing determlnant
● is not.zero:

.
ABC
k.+o =l&+3i--3+r-&

9

It is Interesting to note that furthermore, h order to mke the higher
derivatives uniquely determinable, non-va&hing of the same determinant
is necessary and sufficient.

If the determinantt vanishes which thus coincides with the
characteristic condition derived before (8), r, s, t are no longer
uniquely determinable, but - if at all - only with exclusion of additive
~:#tions of the ”homogeneousequation systam pertzuhing to (13), (14),

. This new criterion of the characteristic condition is, of course,
very closely connected with the property of the characteristics (used
in section 3) of being geometrical 10CUE for the d.iscontinuitiesof the
second order of the integral surface.

k If solutions are to exist at all when the detezmimnt of the ecfuaticm
system (13), (14), (15) vanishes, additional conditions must exist
between the coefficients of the left and right sides. Since the mxnk of

* the matrix

()ABC-D*YO$
oiy~

% order to find for instance rx, Sx, ~, one may, by

differentiation of (13) with respect to x, set up the eqmtion

Arx+Bsx+Ctx=-
[ 1Q?+ Bxs+Cxt+~

as well as the two strip relations of the third order

&x + ysx = r,

xsx+&=a.

.
For r, s, t asswmi as already determin~ the condition mentioned

results for the unique determination of ‘x> ‘x’ tx.
.
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must be smaller than 3, it is necessary that the folloting determinant
be zero:

AC-D
Xoj = A~~ -!-Cqx +
oy~

Accordimg to a deten.uinanttheorem found %y

ti=o (16)

Elmnecker3 this condition is
sufficient. This will not be discussed in more detail since another
derivation will be given directly for this second equation (16) of the
characteristic strip which is added to the characteristic condition (8).
As third equation for the chemacteristic strip one has the strip relation
of the first order (U?) already mentioned:

The

6. me

characteristic

X=ti+qj

Characteristic Differential
lkj.uationSystem

>ondition

AY2 - Bij+c#. o (8)

introduced in three different ways yields the differential equation for
the characteristic base curves. ‘~-order to prepare, according to the
deliberations in section 4, for the building up of the integral surface
from strips of the first order on the integral surface X(x, y), one
has, furthermore, to set up differential equations for *he height and
the position of the integral-surface elements which one.now visualizes
as described by x. x(E), XX= p(g), xy= q(E). DIM *O them~~
of p and q as derivatives of x with respect to x and y, the
relation

s~eefor ~~ceM. B~cher: Einf&nwng in die h&here Alegbra,
(Introduction into the higher algebra), chapter V, 19, first theorem. —

.
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? must be valid, thus, again .denoting differentiations
parameter by dots above them,

*

This is the so-called “strip

u

with respect to the

relation of the first order”.

(17)

The given differential equation (1) results after multiplication
by ~ and the designations r = X=, s =Xm, t = Xy=:

Ar~+Bs&+C~+~-O (18)

According to;the meaning of p, q, r,
relation of the second order:

If one inserts the

p.rx+

~=sx+

exrmession for rx
into (18), one obtai~:

s, t one obtains the strip

Sy,

ty.
(19)

and tj from these equations

(B- -Asfi - Csk2)+Afi+CQx+~=0 (20)

The bracket vanishes according to the characteristic condition (8).
Thus one obtains as second characteristic differential equation

A~+C~x+I@=O -(21)

Finally, the third characteristic db?ferential equation is given by the
strip relation of the first order (17):

k.pk+~ (17)
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One therefore has a characteristic differential equation system altogether
for the five stiip quantities x(5), y(~), X(g), P(g), g(~):

According to
hyperbolic, thus

so that the first
roots for y:

A$-B@+c#’=o,”

A@y+C~X+IZ@=O,- —

k=

presupposition

B2 .

characteristic

pic+qj.

the differential equation (1) is

One notes for later that h’h” = ~.

4AC >.0,

condition (8) h&S

y = )..”X.

The parameter

(22a)

(22b)

(22C)

(9)

two &lfferent real

(23)

of the characteristic
A

of the first family is called ~, as before. the one on the second
family is called q. For q = C6nstant one-than obtains just the
characteristics of the first family, for ~ = Constant those of the
second family (see fig, 1). If one substitutes for instance y = X1*
into the second characteristic differential equation (21), one obtains

X(m’x+m’p+cq) =0,

or

Ak’~+CQ+Dj=O.” (24)

The thirt equation (17) or (22c), respectively, of the characteristic
differential equation system may remain unchanged.
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● Thus one obtains for
clifferential equations

.

tie first family of

13

characteristics the three

(25a)

AA’PE +c~ +-DYE =0, (2X3)

Xg -Px~- Cq = o. (25c)

For the second fenily of characteristics one obtains, correspond@l.y:

Yq -h”% = 0’ (26a) ~

(26b)m“pq + Cqq + DYq = oj

‘v - Pm -Cjyq=o. (26c)

a
II?one interprets the differential eqmtions (25) and (26),

respectively, as ordinary dtiferential equations for X(E), Y(g),
“ X(E), Y(E), q(E) - x(n), y(n), x(T), P(q), q(q), respective~j

one has two indeterminate systems so that from this standpoint one
cannot arrive at an integration theory of the ptial differential
equation (1).

However, M one regards the characteristics as Gauss parameter
curves on the integral sfiface, so that the latter is described
by X(E,T), X(gln) Y(E,v) one ~Y now ~terpret tie Sk ~erent~l
equations (25), (26j as partial clifferential equation system for the
five quntitie6 x(~,q), y(~,q), x(~,q), p(~,q), q(~,q)
seems overdeterndned..

It is also of importance for the practical calctiation
the last equation (26c) of the ~ferential. equation system
automatically fulfilled when the ffist five are satisfied.
therefore, not a case of overdetmninatim.

which

that
is
It iS,

*

.

~ order to prove this important fact, one multiplies (25b)
by yq, (26b) by y~ aad subtracts:

A(X lP~Yq - h“~yg} + c(q~yq - qqY~) = ~.
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tie divides this equation by A.’h”= ~:

‘~
Pgp-Pq# +cigYn-qYg=o

Hence one obtains, using (25a) and (265):

or

%X3 + %p5.= l?~~ + q~Yq.

If one now differentiates (25c) with respect-to q:

‘bl - I?nxg - !lqY~- I=q - !lYgq = o

and substitutes the relation (27) found above:

‘m - Pgfi - ~~Yq - px~q - qygv = o,

one recognizes that

is a function of q solely which will he called h(q). If the strip
relation (26c) is satisfied on a boundary curve cut from the
curves q = Constant (see f’ig.2) that is, the ffist f~~ Of
characteristics, h(q) vanishes; consequently, the strip relation
(26c) is satisfied also in the entire titerior4. The conUtion used
just now, that the strip re~tio~ are satisfiedat tie bo-~es Of ~
region, must, of course, be duly”taken into account in prescribing
initial or boundary conditions.

41n this conclusion it is assumed that characteristics of the first ●

family which are in the interior of the region somewhere meet the boundary.
Characteristics the entire course of which lies in the interior of a
region would represent a rare exception which may be disregarded.

“
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% The existence of the solutions of the differential equation
systm (25), (26) was first established for a pure initial-value
problem of (1) by K. lhiedrichs andH. Lewy, for the mixed problems

. with initial and boundary conditions which are of particular tiportance
for us by F. IlranklandR. Aleksejeva. ~ese existeue theorem are
not so interesting at the moment stice we may refer to the physical
evidence of the possibility of solution. Later on, it is true, we shald.
have to deal with the restricting presuppositions made by F. l?cankl
andR. A.leksejevafor their existence proof, stie they seem to be
connected with certa~ occurrences of physical interest.

7. Conslmuction of an Approximate Solution of the Characteristic
Differential ~uaticn System According to the Lattice

Point amd Field Method

me asswnes the six characteristic differential eqmtions of the
form (25), (26) written ti differentials:

dy-x’ax=o, (28a)

AA’dp+Cdq+Ddy=O, (28b)

dx-~-qdy= c); (280)

dy - A.’ydx= o, (29~)

AA “dp + Cdq

dx--

+Ufy=o, (29b)

-Qti=o. (29c)

The three equations (28) refer
(slope of the base curves X ‘), the
family of characteristics (slope of
two equations (2&) or (29c) may be
of the last paragrayh.

to the ftist family of characteristics
three equations (29) to the second
the base curves ~“) . One of the
emitted according to the expositions

This presentation of the characteristic differential equations
tiediately suggests an approximation method which essentially consists
in the replacement of the differentials by finite differences.

One visualizes the x, y - region covered by a net of the two
families of characteristic base curves.. h figure 3 the characteristic
base curves of the ftrst family with the slope k’ are drawn in solid
lines, those of the second fsmily with the slope

. The points of intersection form a point lattice.
h “ in dashed ones.
According to the first o
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method, the %attice point method”, the position of these ~tt$ce
~fits and the values of x, P, q at tie ~ttice iofits ~e to be
detemined ayproxi?m%tely.

A rule for contfiuation is given by aEsuming that the procedure
is performed to include the lattice potits 1, 2, whereas the
continuation is to take place toward the Uattice poto.t3. The indices
are apportioned accord- to the nwnbers of the lattice points. By
repl.ac~, as announoed, the differentials in (2&) and (2%) by
differences, one obtains for the approximate determination of x, y,
that is the position of the lattice point 3, the two equations

Y3 - Y1 =A~’(x3 - xl), (3oa)

Y3 ‘y2 =k2”(X3 ‘X2). (3@).

,.,

The approx~te values of P3, q3 at the lattice yoi~t~;3.”~,’by

approximation of the differential eq~tions (28b),
correspondinglyfrom the following two equations:

Finally one
from

or from

Q1’(P3 - PI) + cl(~3 - u)

J@2 “(Y3 - P2) + C2(q3 - q2)

may determine Xl according

+ DI(Y3 -

+ D2(Y3 -

(29%), d~k-ed

Yl) = o, (31a)

y2) =0. (31b)

to (2&) or (29c) approximately

‘3 -xl- P1(X3 - xl) - @Y3 - Yl) = 0) (32a)

X3 - X2 - P2(x3 ‘x2) - q2(Y3 ‘Y2) = O (32b)

The second method, the “fieldmethod”, offers certain advantages aO
to the representation of the results while the expenditure of calculation
is the same as b the lattice point method. h the field method one
starts from the concept that the characteristic base curves divide the
x,y - region into fields. For every one of these fields an approximate
value for each p and q is to be determined. The distribution of X
will then be represented by lines of equally large x (contour lines of
the integral surface). According to this interpretation, a galcu3ation
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scheme is formed by the characteristic base curves; in each compartment or
. field two figures, namely the approximate values of p and q, are written.

The rule for continuation for the field method is developed from
that for the lattice point method. One aseumes the field method to
have proceeded so far that the destied approx~tion values in the
fields I and II (fig. k) are already lmown whereas they are just
about to be determined for the adJo_ field III. Correspondingly,
the coordinated lattice point method is assumed to have proceeded to
include the points 1, 2, 3, whereas It is just about to be applied to
the lattice points 4 and5. The data about the approximation values
obtatned from the characteristic dfiferential wuatio- (2@), (2%)
are of foremost importance; they read, in appropriate sequence:

A1~l’(P4 - Pl) +cl(~4 - ql) +D1(Y4 -Y1) = 0, ( 3*)

A.& ‘(P~ - P2) + ~2(!15- q2) ‘D2(Y5 - Y2) = 0; (33~)

A@2 “(p4 - P2) + C2(q4 - Q) + D2(y4 - y2) = O, (&a)

A3k3’’(P5-P3) +~3(~5 ‘g3) +D3(Y5 - Y3) = 0. (34b)

By addition of the two equations (33a) and (33b) which have been divided
by two there follows after appropriate rearrangement

(Al+~~’-A1’ P4-p5 Y1-P2
+—

2 2 2-2 ) ‘1(351

.
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lx - in the sense of the approximation used - me now neglects terms
that are of second or higher order in the clifferences, the entdre right
side of (35) is eliminated and one obtains

Now one identifies certain mean values of the desired quantities ~ the
lattice points with the corresponding qusnti.tiesin the fields to the
bounda~ of which the respective lattice points ~ertain, nemely5

}
( 37)

%?he point with the coordinates x1, yI represent in a certain
sense the center of the field I, namely the bisecting point of the
diagonal 1 ... 2. The definition of the field center has to be
selected for the reason that of -theunknown field III only the one
diagonal 4 ... 5, titi a course corresponding to that of 1 ... 2, i5
already knawn.

.

.

.

.
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to identities.

.

for which one

19

of the following type:

+

+

Al+%
— ‘A(xI, yIy ~IJ PI> qI)

2

A(xl) Yl, ~ly Plj Q) - ‘(xI~ YIJ ‘1~ PI) qI)

A(%Y Y2Y X2Y P2Y ~z) - A(xI, yI, ‘I, pI, qI)

2

writes abbreviatedly:

Al+% Al -A1+~- AI.

2
.A1+ z

2 (38)

E one substitutes this expression and the corresponding ones into (36)
b

and again neglects terms which are of second or higher order in the
differences, one obtains as a formula of the field method:

.

L-L

The corresponding formula which
and (34b) reads:

It
to

CI(qIII - qI) ‘~(y~l ‘Y1) = 0. (39)

can be derived from the equations (34a)

.
+ CII(qI~ - qI1) +D1-(Y~ - Y~) = O (4o)

must especially be noted that in (39) the progressing from field.I
field.III takes place by crossing a characteristic base curve of the

second kind whereas-in (39; the slo~e k’ of the characteristic Wse
curve of the first kind appears. A corresponding statement may be made
re~rding equation (40) which regulates the progressing from field.II
to field,IH by crossing a characteristic base curve of the first kind.
For the rest, however, the equations ere no more complicated than for
the lattice point method. .—

The closing of the new field III by characteristic base curves
.

connecting the lattice points 4 and ~“w-ithpoint 6 would be cam.ed

.
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according to the lattice point method by

Y6 -

76 -

If one replaces in the field

y6 -

Y6 -

Y4 = h4’(X6 - X4)

1
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.

.

(41)

method h4~ ty

Y4 = kill’(x6 -

Yy = hln’’(X6 -

J
hl~’, A3” by AID”:

X4)

1

I

(42)
X5)Y

J

one h= altered we equati~s (41.)on= by quantities which are of
second order in the”d~fmencee, so that the--equations(42) can be used
as further equations of the field method.

The contour Unes of the”titegral surface, that is, the lines of
equaUy large X, are constructed simply according to the relation

a~=plx+qdy=o (43)

as lines of the slope

!2L=.X!
~ (44)

stiting from am irdtial distribution of X. h every field p and q
remain unchanged according to the field.method so that=ne obtains an
approximation of the contmur lines of the integral surface by series
of lines.

The equations (39), (40), (42), and (44) detemine the field
method. They are no more cumbersome than the equations of the lattice
point method.

So far the progressing had been represented only fi the interior
of the region. How the two methodsjhave to %e altered for the
bounda~ will be indicated by an example.

x

.
.
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Let the lattice point method be performed incluMng the points
.

1, 2, 3 and be Just a%out to be extended to the next lattice point 4
(point of intersection of a characteristic base curve of the second

●
kind with the heaviQ drawn boundary, figure 5). According to (29a)
one then obtaima approximately

Yb ’73 ‘~3’’(xk ‘~3).

The second equation for determination of the coordtites x4, y4 of

the lattice point 4 is yielded ly the equation of the boundary curve.
According to (29b) one obtains further approximately:

A3L3’’(P4-P3) +C3(q4 -q3) +D3(Y4 -Y3) = 0.

The second equation for the determination of ph, q4 must be givenby

the boundary condition. x4 may
. according to (29c), frm

. x4 - X3 - P3(X4 -

then be approxktel.y determined.,

x3) - @Y’4 -Y3) = 0.

According to the field method one lays a characteristic base curve
of the second kind through the center of the field I (bisecting point
of the diagonal 1 ... 2) to the point of intersection with the loundary.
This point of titersection has been msrk= in figure 5 by the field
number II. Within the accuracy of the field method this characteristic
lase curve runs pmallel to 2 ... 3. Then one obtains according to
(29b):

The second relation necessary for dete~tion of ~1, qII must

be yielded by the bounda~ cotition. The closing of the field II
ly a characteristic base curve of the second kind-and the plotting
of the curves of equal X - values takes place in the customry manner.

The methods described yield only a first appro~tion. For linear.
problems fmproved approSmations are often obtahed by a refined approxi-
mation of the differentials in the characteristic differential equation

.
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system (28), (29) with the aid of higher differences. For nonlinear
problems such an attempt does not seem very promising. Iterative methods,
on the other hand, will probably lead, with tolerable expenditure of
calculation, to improved approxtitions emd finally also to am estimate
of emors.

8. Literature

1. The development of the theory of characteristic given in
sections 1 to 6 is governed entirely by the needs of the practice and
thus deviates from the usual text book representations. However,
similar interpretationsmay be found represented particzdarly in the
book byR. Courant and D. Hilbert entitled ‘tiethodende~Mathematischen
Physik 11” (Methods of Mathe=tical Physics II), Berlin 1937. Hence,
for instance the concepts of titerior and exterior differentiation
have been taken over.

2. The existence proof for the pure initi-~ probler-has been
givenby K. l?riedrichsandH. Lewy in Mathematlsche Annalen, Ed_.99,
p. 200, 1928. Accounts of this existence proof may he found, for
insbnce, in J. EMamard’s ‘!Leconssur le p?oll~me de Catchy,” (Lessons
regarding the problem of Cauchy) p. 487, Paris 1932 and in Courant -
Hilbert l.c., p. 326. For the mixed problems occurring in the
applications in gas dynamics the existence proof has been given along
the same lines by F. Frankl andR. Aleksejeva ina report entitled
‘ho boundary-value problems from the theory of the hyperbolic partial
Ufferential equations of the second order with application to gas
flows at supersonic veloci~,” (Russian),Matematiceski Sbornik,
issue 1934, p. 483.

3. The distinction between lattice point and field method has been
newly introduced here. A report on the lattice point method which was
developed particularly by I. Massau, Gent 190G to 1903, is to be
found in the encyclopedia article ly C. Runge and Dr. A. Willers II C 2 ~
numerical and graphic integration, p. 160. The field method had so
far been developed only for a special case by L. Prandtl and A. Busemann,
‘!l’?dh?rungsverfahrenzur zeichnerischen Ermittelung von ebenen Str&mngen
tit dberschallgeschwindigkeit,“ ~odolafestschfit Z&ich 1929
(Approximtion method for graphic determination of two-dimensional flows
of supersonic veloclty, Stodol.aanniversary publication Z&ich 1929).
An essential simplification in this special case is based on the fact
that the differential-equationcoefficient A, B, C depend only on p
and q whereas D altogether vanishes. For the general case treated
in this report therehad to be found, in contrast, above all a signiflcarit
definition of the field center.

.

*

.—
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Simplified,Derivation of the Field Method

.

Whereas the field method was developed from the lattice point
method in section 7 of chapter II, it is to be derived here directly
from the chazzuteristic differential equations.

According to the basic concept of the field method the x, y -
region is divided -to fields in the mmner of a calculation scheme
by a net of characteristic base curves; the approxhate values of p
and q are written ti these fields. The methmi is assumed to have
proceeded to a yoint where the approxhate values in the fields I and II
(see flg. 6) are already lmown whereas they are just about to he
determined for the adjoining field III. The desired rule for continuation
wiU. be o%tained by means of an appropriate definition of the field
centers.

Since of the unhuwn field III k ... 5 is knownas the sole diagoml,
the bisecting petit of this diagonal is selected as field center. The

. field centers of the fields I and II are then deftied as bisecting
points of the correspondingly situated diago=ls 1 ... 2 and 2 ... 3.
One assumes the field numbers 1, II, .111written at these field centers.v

The corner points 1 ... 4 are, within the scope of our approxktion,
connected by a straight ltne. Since this line is closing the field I,
its slope is selected to equal that of a characteristic base curve
corresponding to the approximation values prevailing in tie field I, thw:

Y4 ’71 ‘X1’(X4 ‘Xl). (459)

Similarly:

Y5 - Y2 =XU’(X5 -+). (45b)

According to the definition of the field centers there is

J
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Adding (45a) and (45b) and dividing by 2, one obtains

— NACATM l!242

X4+X5- sxl + Y2 x4 - xl
.hl’ ~ + An 1?

2

( )
‘51

SA1, X4+% ‘1+% &’ -AI’)(X -X2) ’47)
2-2

+
2

.

Neglecting te~ which are of the second order in the differences one
obtainE accord- to (46) and (47):

~111

Correspondhgly, it caa be

- Y~ = kl ‘(x~~ - + . (kt!a)

shown that

Y1l = ~~ “(XIII - x~) . (48b)

Therewith it is proved that the lines connecting the field centers in
first approximation are characteristic base curves.

.

.

.

.

For the transition fran I to III or II to III, respectively, it is
mw permissible to set up the characteristic clifferential equation (28b)
or (29b), respectively, with the differentials replaced by differences.
Que obtains as rule for continuation for the detezmimtion of plll

- ~111:

Field 111 is then approximately bounded by characteristic

Y~ - Y4 = ~111’(x6 - X4),

y6 - y5 = ~~1’’(x6 - x5),

}

J
base curves:



4G NACATM 1242 25

if 6 is the index of the unlmown corner petit of field III. The
corresponding rule had %een assumed before for fields I and II.

The construction of the contour lines (X = Constant) of the
integral surface has already been discussed on page 20 (equations (43)
smd (44)), the mcd.ificationsof the method becoming necessary at the
boundaq on page 21. The representation of these facts is not affected
by the new viewpoint.

Translation by Mary L. Mshler,
National Advisory Committee
for Aeronautics.
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Figure 1

Figure 2
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Figure 6
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~cA - Langley Field, VI.


